- Home
- Articles
- Trigonometric functions
The secondary trigonometric functions are the sine and cosine of an angle. These are sometimes abbreviated sin(θ) and cos(θ), respectively, where θ is the angle, but the parentheses around the angle are often omitted, e.g., sin θ and cos θ.
When the trigonometric functions are reflected from certain angles, the result is often one of the other trigonometric functions.
Trigonometric functions are as given below
- $$sin (A + B) = sin A cos B + cos A sin B$$
- $$sin (A - B) = sinA cosB - cos A sin B$$
- $$cos (A + B) = cos A cos B - sin A sin B$$
- $$cos (A - B) = cos A cos B + sin A sin B$$
- $$tan (A + B) = {tan A + tan B \over 1 - tan A tanh B}.$$
- $$tan (A - B) = {tan A - tan B \over 1 + tan A tanh B}.$$
- $$sin (A + B) sin (A - B) = sin^2A - sin^2B$$
- $$cos (A + B) cos (A - B) = cos^2 A - sin^2 B$$
- $$2sin A cos B = sin (A + B) + sin (A - B)$$
- $$2cos A sin B = sin (A + B) - sin (A - B)$$
- $$2cos A cos B = cos (A + B) + cos (A - B)$$
- $$2sin A sin B = cos (A - B) - cos (A + B)$$
- $$ sin C + sin D = 2sin ({C + D \over 2}) cos ({C - D \over 2})$$
- $$sin C - sin D = 2cos ({C + D \over 2}) sin ({C - D \over 2})$$
- $$cos C - cos D = 2cos ({C + D \over 2}) cos ({C - D \over 2})$$
- $$cos C - cos D = - 2sin ({C + D \over 2}) sin ({C - D \over 2})...... (C > D) $$
OR
$$cos C - cos D = - 2sin ({C + D \over 2}) sin ({D - C \over 2})...... (C < D) $$
- $$ sin ({π\over 2} - θ) = cos θ $$
- $$tan ({π\over 2} + θ) = - cot θ $$
- $$cos ({π\over 2} - θ) = sin θ $$
- $$cot ({π\over 2} - θ) = - tan θ $$
- $$cosec ({π\over 2} - θ) = sec θ $$
- $$sec ({π\over 2} - θ) = cosec θ $$
- $$tan ({π\over 2} - θ) = cot θ $$
- $$cot ({π\over 2} - θ) = tan θ $$
- $$sin ({π\over 2} + θ) = cos θ $$
- $$cos ({π\over 2} + θ) = - sin θ $$
- $$cosec ({π\over 2} + θ) = sec θ $$
- $$sec ({π\over 2} + θ) = - cosec θ $$
Mr.kale Gorkhashnath
B.A. D.ed
Sandesh Vidyalaya, Suryanagar, Vikhroli(w), Mumbai-400083
Your Comment:
(0) Comments: