Updates

Hyperbolic Functions

In mathematics, hyperbolic functions are analogs of the ordinary trigonometric, or circular functions.

The basic hyperbolic functions are the hyperbolic sine "sinh" and the hyperbolic cosine "cosh" from which are derived the hyperbolic tangent "tanh" hyperbolic cosecant "csch" or "cosech" or hyperbolic secant "sech" and hyperbolic cotangent "coth" corresponding to the derived trigonometric functions.

Some formulas are as given below

  1. $$Cosh^2 θ - Sinn^2 θ = 1$$
  2. $$Sech^2 θ + tanh^2 θ = 1$$
  3. $$Coth^2 θ - Cosech^2 θ = 1$$
  4. $$Sinh (A + B) = Sinh A.Cosh B + Cosh A.Sinh B$$
  5. $$Sinh (A - B) = Sinh A. Cosh B - Cosh A. Sinh B $$
  6. $$Cosh (A - B) = Cosh A Cosh B + Sinh A Sinh B$$
  7. $$Cosh (A - B) = Cosh A Cosh B - Sinh A Sinh B$$
  8. $$tanh (A + B) = {tanh A - tanh B \over 1 - tanh A tanh B}.$$
  9. $$tanh (A - B) = {tanh A - tanh B \over 1 + tanh A tanh B}.$$
  10. $$sinh 2A = 2 sinh A . Cosh B $$
    & $$ sinh 2A = {2tanh A \over 1 - tanh^2 A}.$$
  11. $$cosh 2A = cosh^2 A + sinh^2 A$$
    $$cosh 2A = 1 + 2 sinh^2 A$$
    $$cosh 2A = 2cosh^2 A - 1$$
    $$cosh 2A = 2cosh^2 A - 1$$ $$cosh 2A = {1 + tanh^2 A \over 1 - tanh^2 A}.$$
    OR
    $$cosh 2A + 1 = 2 cosh^2 A$$
    OR
    $$cosh 2A - 1 = 2sinh^2 A$$
  12. $$tanh 2A = {2 tanh A\over 1 + tanh^2 A}.$$
  13. $$sinh 3A = 3 sinh A + 4 sinh^3 A$$
  14. $$cosh 3A = 4cosh^3 A - 3cosh A$$
  15. $$tanh 3A = {3tanh A + tanh^3 B\over 1 + 3tanh^2 A}.$$
  16. $$sinh (A + B) + sinh (A - B) = 2sinh A cosh B$$
  17. $$sinh (A + B) - sinh (A - B) = 2cosh A sinh B$$
  18. $$cosh (A + B) + cosh (A - B) = 2cosh A cosh B$$
  19. $$cosh (A + B) - cosh (A - B) = 2sinh A sinh B$$
  20. $$sinh A + sinh B = 2sinh ({A + B \over 2}) cosh ({A - B \over 2})$$
  21. $$sinh A - sinh B = 2cosh ({A + B \over 2}) sinh ({A - B \over 2})$$
  22. $$cosh A + cosh B = 2cosh ({A + B \over 2}) cosh ({A - B \over 2})$$
  23. $$cosh A - cosh B = 2sinh ({A + B \over 2}) sinh B ({A - B \over 2})$$

Labels: MPSC, TET, NET-SET, Maths, Mathamatics, Hyperbolic Functions

Your Comment:
Name :
Comment :
(0) Comments:
Upcoming Exam Forms
MH LAW CET 2023
Last Date:- Mar 25, 2023

Subscribe to get latest updates about Exam Schedules, Government Jobs, General Knowledge & Current Affairs and Many more on Whatsapp!

Subscribe to Gopract Updates!

Advertisement

 Full Length Mock Tests
 Answers with Explanation**
 Timer Based Exams
 Instant Result and assesment
 Detailed analasys of Result